4" (100mm) SiC Epitaxial Wafer

(100 mm) SiC Epitaxial Wafer Version 100/03/2020

Items	N-type Specification	Typical	P-type Specification	Typical
Diameter	4 " (100 mm)	_	4 " (100 mm)	_
Poly-type	4H	_	4H	_
Surface	(0001) Silicon-face	_	(0001) Silicon-face	_
Off-orientation toward	4 deg-off	_	4 deg-off	I
Conductivity	n-type	_	p-type	-
Dopant	Nitrogen	_	Aluminum	-
Carrier Concentration	2E15-3E16 cm ⁻³	_	2E15-3E16 cm ⁻³ —	
Tolerance	<u>±</u> 15%		± 50%	
Uniformity	< 8%	<5%	< 20%	
Thickness Range	0.5-30 μm	_	0.5-30 μm	_
Tolerance	± 10%	± 5%	± 10%	± 5%
Uniformity	< 4%	<2%	< 5%	<2%

Notes:

- N-type epi layers <30 microns are preceded by n-type, 1E18 cm⁻³, 0.5 μm buffer layer
- N-type doping is determined as an average value across the wafer (17 points) using Hg probe CV
- Thickness is determined as an average value across the wafer (17 points) using FTIR
- Uniformity: standard deviation(o)/average

Thickness Map Thickness=11.73 µm Uni=1.18%

Dopant Map Dopant: 3.27E15 cm⁻³ Uni: 3.17%

4" (100mm) SiC Epitaxial Wafer

Surface Defects & Roughness

Items	Definition	Specification	Typical
Surface Defect	The sum of discrete microscopic defects counted in specified area. These include but not limited to triangles, downfall, comets and carrots.	<1.0 cm ⁻²	<0.8 cm ⁻²
Surface Roughness	Roughness are scanned by AFM (atomic force microscope) on a 10 μm x10 μm area.	≤1.0 nm	≤0.5 nm
Scratches	Grooves or cuts below the surface plane of the wafer having a length-to-width ratio of greater than 5 to 1.	<1 x wafer diameter	
Usable area	2 mm x 2 mm area in whole wafer without surface defects		≥98%

Note:

- Defect limit applies to whole surface except for 3 mm edge exclusion area in 100 mm
- Defect caused by substrate quality with additional CMP treatment not applicable for substrate provided by customer
 - Example: scratches, surface defects, usable area step bunching, different polytype
- For ultra high thickness above 30 µm or any special epitaxy requests, please Contact our Sales, local representatives or via enquiry@sicty.com

Roughness Map RMS=0.22 nm

OS TECH